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A partially collapsed lung airway or other flexible tube is modelled as a two-
dimensional channel of infinite length. We consider the linear stability of this system
conveying a developing flow, analysing the full Orr–Sommerfeld system analytically
for long waves and numerically for arbitrary wavelengths. We find a long-wave
instability which has not been observed in previous channel studies. This long-wave
instability is stabilized by increasing the elastance of the wall, but other wall properties
do not affect it except in correction terms. In addition to the long-wave instability,
there is the finite wavelength (flutter) instability, which, depending on the parameter
values chosen, may be critical at a higher or lower flow speed than the long-wave
instability. For special parameter values the long-wave and flutter instabilities are
critical at the same flow speed. Comparisons with experiments show that theoretical
predictions are in agreement with experimental observations.

1. Introduction

In this study we examine the stability of developing flow through a flexible, two-
dimensional channel. This is a model for systems in engineering and physiology in
which flows are conveyed by compliant tubes. In many applications the tubes are short
and flow speeds are large, so that consideration of a developing velocity profile is
appropriate. We are specifically interested in flow through the lung airways, which can
oscillate owing to wall–fluid instabilities that are thought to be the cause of wheezing
lung sounds (Grotberg & Davis 1980).

There are a number of interrelated steady and unsteady behaviours that occur in
flexible fluid-conveying tubes which are absent in rigid systems. If the pressure
difference between the exterior and interior of such a tube is sufficiently large it may
collapse. This results in a partial or complete obstruction of the tube cross-sectional
area as the initially circular cross-section deforms into an oval or dumbbell shape
whose aspect ratio may exceed 10. For very flexible tubes the required pressure
difference may be small enough that easily attained changes in the tube environment,
or the pressure drop resulting from a flow in the tube interior, may precipitate collapse.
With the occurrence of collapse, the flow rate through the tube may become
independent of the conditions at its downstream end (flow limited), and concurrent
with or following collapse, large- or small-amplitude wall oscillations may also be seen
(Shapiro 1977; Conrad 1969; Katz, Chen & Moreno 1969; Gavriely et al. 1989). Small-
amplitude wall oscillations may also occur in more rigid (uncollapsed) tubes
transporting fluids at sufficiently high velocities (Paı$doussis & Issid 1974).
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The oscillatory wall–fluid instabilities that are present in flexible tubes may be
divided into two categories : those that require wall inertia (which we call flutter) and
those that do not. Flows through flexible tubes for which the wall inertia is small by
comparison with fluid inertia show various oscillatory behaviours which depend on
this ratio of inertias, and which are strongly influenced by the downstream conditions
in the experimental device (Bertram & Pedley 1982). The work on oscillatory
instabilities dominated by fluid inertia (as is the case in the blood vessels) is the subject
of a review by Kamm & Pedley (1989) ; we refer the reader to this for a treatment of
and reference list on this subject. Flutter instabilities are higher-frequency oscillations
arising from the coupling of the fluid-dynamic pressure with the compliant wall.
Instabilities similar in mechanism to Kelvin–Helmholtz and water waves are among
these. For the appearance of a flutter instability, a well-defined critical fluid velocity
must be attained. Flow limitation is not a prerequisite for the instability, but flutter
may be facilitated through the decrease in tube cross-sectional area and resulting
increase in fluid flow speed that accompany limitation. In experimental studies of
flutter in thick-walled tubes (Gavriely et al. 1989) and wheezing in the lung (Gavriely,
Kelly & Grotberg 1987) these oscillatory phenomena have in fact been observed only
in the presence of flow limitation.

2. Previous theoretical work

While we are specifically interested in compliant channel (or tube) flows, there is
some overlap between the behaviour of such systems and that of flows over single
compliant plates. The pioneering work on the interaction of flows with compliant
structures is that of Benjamin and Landahl, who in the early 1960s considered the
stability of boundary-layer flow over a compliant surface. Their work (Benjamin 1960,
1963; Landahl 1962) showed that the presence of a compliant boundary may
significantly influence the Tollmien–Schlichting instability (TSI) and that there are also
wall–fluid (flutter) instabilities which arise as a direct result of wall compliance. The
latter instabilities may exist in the absence of viscosity, and each is affected differently
by damping in the wall or fluid. To postpone significantly the onset of instability, it is
therefore necessary to choose carefully the compliant surface so as to stabilize the TSI
while avoiding the appearance of the different wall–fluid instabilities (Landahl 1962).
The TSI is stabilized by the presence of the compliant surface, an effect also seen by
Hains & Price (1962) for Poiseuille flow through a flexible channel. A review of this
early work appears in Benjamin (1964). Carpenter & Garrad (1985, 1986) presented an
in-depth analysis of the linear stability of Blasius flow over a compliant plate, in which
they considered both the flutter instabilities and TSI. Flutter was investigated both
analytically and numerically, and TSI numerically. Their 1985 paper also includes a
review of the extensive literature on the theoretical and experimental stability analyses
for flow over a flat plate, and we refer the interested reader to this and the reviews of
Gad-el-Hak (1986) and Riley, Gad-el-Hak & Metcalfe (1988) for a complete overview
of the subject. More recently, a multi-deck asymptotic theory for the flutter instability
in this geometry was developed by Carpenter & Gajjar (1990).

Weaver & Paı$doussis (1977) observed that the flutter instability seen in flattened (or
collapsed) soft tubes is not the classical shell flutter mode in which the tube flattens
alternately in the two perpendicular directions normal to the tube axis, but rather a
‘flapping flutter ’. This flapping flutter involves the oscillation of the longer opposing
walls of the flattened oval cross-section of the tube either in or out of phase with one
another, and its nature suggests that it might be appropriate to model the tube as a
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channel. Weaver & Paı$doussis (1977) and Matsuzaki & Fung (1977) considered
inviscid flow through a channel with various wall models, and found through linear
analysis a divergence instability for both the symmetric and antisymmetric flutter
modes when damped or finite-length models were considered. It should be noted that
Weaver & Paı$doussis used the method of images to find the fluid velocity. However,
while this should result in an expression involving an infinite sum, they included only
the first two terms, so that their solution allows cross-flow at the walls of the channel.
Grotberg & Davis (1980) considered the physiological application of the flexible-
channel-flow problem as a model of a collapsed airway, theorizing that wheezing lung
sounds may be symptomatic of a flutter oscillation in the airway walls. They found that
stability is lost to a flutter instability unless damping is also included in the wall, in
which case the instability appears for lower flow speeds and is divergent. By taking the
appropriate limit, Grotberg & Davis showed also that results obtained in the two-
dimensional geometry are consistent with one-dimensional studies (e.g. Shapiro 1977).
The drop in critical flow speed with the addition of damping was first explained by
Landahl’s (1962) study of flow over a compliant plate, which showed that in the
absence of wall damping the system is neutrally stable prior to the instability. The
addition of damping is destabilizing, and thus reduces the critical flow speed. The same
effect may be obtained through the introduction of a finite axial length to the system
(Lucey & Carpenter 1992, 1993). A similar drop in critical flow speed may be obtained
by including fluid viscosity in the absence of wall damping, which results in the
appearance of another flutter instability. This observation was made for flow over a
compliant plate by Carpenter (1984), and a similar observation for flow in a compliant
channel may be seen with the Grotberg & Reiss (1984) model.

In all of these channel analyses, the inclusion of damping in an infinite-length
channel wall results in a divergence instability rather than an oscillatory (flutter)
instability. However, in physical systems flutter is observed. To address this
discrepancy, Grotberg & Reiss (1982, 1984) added a linear (hydraulic) friction term to
the potential flow through a channel to approximate the effect of viscosity. It was
shown by Grotberg & Shee (1985) that this approximation is consistent with results
from the full Orr–Sommerfeld equation when viscosity and wall damping are taken to
zero and their ratio is O(1). They found that the addition of fluid friction results in the
reappearance of the flutter instability, and through a weakly nonlinear analysis showed
also that the bifurcation to flutter is supercritical and hence stable. Both linear and
nonlinear results from this model were found to agree with collapsible tube experiments
(Grotberg & Gavriely 1989).

Paı$doussis & Mateescu (1987) considered the stability problem of a cylindrical
shell with clamped ends conveying a developing flow, and found that the addition of
viscous effects to the inviscid analysis was stabilizing. In this case, with a finite-length
compliant section, no flutter was found, which is consistent with the results of Garrad
& Carpenter (1982) for non-turbulent flow over a finite-length compliant plate.

The effect of a finite-depth elastic boundary on the TSI in plane Poiseuille flow was
considered by Pierucci & Morales (1990), though their stability results may be
influenced by their assumption that the critical wavenumber remains unchanged by the
introduction of the elastic wall. There have also been a few nonlinear studies of the TSI
for Poiseuille flow in a compliant channel. Rotenberry & Saffman (1990) did a weakly
nonlinear analysis of the instability and derived a Ginzburg–Landau equation for the
amplitude of the bifurcating solution. The channel walls they considered were simple
compliant boundaries with allowance for wall damping, and they found that when
these are sufficiently flexible the bifurcation to the TSI goes from being subcritical, as
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is the case for a channel with rigid walls, to supercritical. Rotenberry (1992) considered
the same channel system with the addition of tension to the channel walls, and inferred
the criticality of the bifurcation from the shape of the curve of disturbance energy as
a function of Reynolds number. He concluded that while sufficiently flexible walls may
render the bifurcation supercritical, the magnitude of the supercritical branch is, in
fact, very small, so that for finite but small disturbances the bifurcation appears
subcritical. Thus, wall flexibility does not qualitatively change the character of the TSI
in plane Poiseuille flow.

These studies show that the effects of wall and fluid damping are significant in
determining the nature of the flutter instability, and also that their accurate inclusion
is important in determining the nature of the observed instability. In many applications,
including the lung airways, the length of the flexible tube is shorter than the entrance
length of the flow. Previous studies of the flutter instability have not considered a
developing flow profile. Our primary objective in this study is therefore to explore the
fluid-elastic (flutter) instability with a developing flow. We choose a planar channel
model for this purpose, since it allows exploration of the developing flow profile
without introduction of additional issues involving the non-planar three-dimensional
geometry of a collapsed tube or lung airway. Further, the use of such a model is well-
motivated by previous studies, which have with success applied such models to the
biofluid mechanics of lung airways and blood vessels. In the present study, we therefore
consider the full linear stability problem for a developing profile in a compliant
channel. In the following sections, we develop our model (§3) and present analytical
(long wave) and numerical solutions (§§4–6). Because this study is motivated by an
interest in flutter in the lung airways, we then make some comparisons of our
theoretical results with representative previous experiments (§7) and conclude with a
discussion of our results (§§8 and 9).

3. Model development

3.1. Wall and fluid equations

To model a partially collapsed flexible tube we consider a two-dimensional channel
with compliant walls. Through this flows an incompressible Newtonian fluid. This is
shown in figure 1. We develop the equations modelling this system in the following.
The wall model is the same as, or similar to, that used in many other studies (e.g.
Grotberg & Reiss 1984; Grotberg & Gavriely 1989; Carpenter & Garrad 1985, 1986),
and we therefore do not present as much detail in its development as in that for the
fluid flow. We consider the linear stability of the flow through the channel when the
channel walls are initially flat, and therefore write the streamfunction for the fluid flow
as a base state plus a disturbance, which is introduced in the usual manner using
normal modes. This stream function is

Ψ¯Ψ
!
­ψ«¯Ψ

!
­φ(z) exp (ik(x®ct)), (3.1)

where Ψ
!

is the stream function of the base flow, discussed below in §3.2. Here and
following, lengths and velocities have been non-dimensionalized on the half-channel
width b* and an elastic wave speed of the wall, uW ¯ (E*b*}ρ*)"/#, where E* is the
elastance (spring-constant) of the wall and ρ* the density of the fluid. Similarly, we
non-dimensionalize time on b*}uW and pressure on ρ*uW #. Writing the (x, z)-position of
a point on the wall as (U,W ), we also expand the wall position as a base state plus a
disturbance,

(U,W )¯ (0,®1)­(U «,W «)¯ (0,®1)­(χ, ζ) exp (ik(x®ct)). (3.2)
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z*
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h*

F 1. Flexible walled channel model.

The motion of the wall is given by the von Ka! rma! n plate equations (Sapir & Reiss
1979) which, after insertion of (3.2) and linearization in disturbance quantities, are :

(®(kc)#M®2 ikcG­Bk%­Tk#­1) ζ­∆SN¯ 0, (3.3)

(®(kc)#M®2ikcH­dk#)χ­∆ST¯ 0, (3.4)

both at z¯³1. The non-dimensional parameters in (3.3) and (3.4) are : the ratio of
wall to fluid mass, M¯ (ρ$

w
h*}ρ*b*) ; normal and tangential wall damping

G¯Mb*G*}uW and H¯Mb*H*}uW ; bending stiffness d¯ 12D*}h*#b*ρ*uW # ; flexural
rigidity B¯D*}b*$ρ*uW # ; imposed longitudinal tension T¯T*}b*ρ*uW # ; and, normal
and tangential fluid stresses ∆SN and ∆ST. The elastance (spring-constant) is
E¯E*b*}ρ*uW #, which equals one for our choice of scales. Dimensional parameters
appearing in these are the wall density ρ$

W
, wall thickness h*, normal and tangential

wall damping G* and H*, flexural rigidity D*, and imposed tension T*. Assuming
deflections of the plate to be small, the stresses in (3.3) and (3.4) are

∆SN¯®∆p­
®2ψ!

xz

R
w

, ∆ST¯
ψ!

zz
®ψ!

xx

R
w

, (3.5)

where R
w

¯ uW b*}ν is the Reynolds number and ∆p the difference between the fluid and
external pressures. We have chosen the notation R

w
to emphasize that this Reynolds

number, owing to our choice of velocity scale as a wall elastic wave speed, is related
to the wall elastance.

The fluid flow must satisfy the Navier–Stokes equations, which, after linearization,
give the Orr–Sommerfeld equation,

k(u
!
®c) (φ§®k#φ)®ku"

!
φ­

i

R
w

(φiv®2k#φ§­k%φ)¯ 0, (3.6)

assuming that the base flow given by Ψ
!

is parallel so that u
!
(z)¯dΨ

!
}dz is the

base axial flow velocity in the channel. At the channel wall, the fluid must satisfy the
linearized kinematic and no-slip conditions,

kc#χ¯ i(φ«c­φu!

!
), φ¯ cω, (3.7)

where u
!

and φ are, after linearization, evaluated at z¯³1.
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With (3.5), (3.1) and (3.7), the wall equations (3.3) and (3.4) become (after
elimination of the pressure from (3.5) using the Navier–Stokes equations)

(®(kc)#M®2ikcG­Bk%­Tk#­1)kφ­kc#φ«­kcu!
!
φ®

ic

R
w

(φ¨®3k#φ«)¯ 0, (3.8)

(®(kc)#M®2ikcH­dk#) (cφ«­φu!

!
)­

ikc#

R
w

(φ§­k#φ)¯ 0, (3.9)

both at z¯³1.
Solution of the linear stability problem then requires us to find a solution to the

Orr–Sommerfeld equation (3.6) with boundary conditions (3.8) and (3.9). By
assuming disturbances to be separated into ‘symmetric ’ and ‘antisymmetric ’ modes we
may restrict attention to the lower half of the channel. For symmetric disturbances the
channel walls oscillate out of phase with one another (in a varicose shape) so that the
disturbance streamfunction must satisfy conditions of no cross-flow at the midline; for
antisymmetric disturbances the walls are in phase (a sinuous shape) and we require no
axial flow at the midline. These conditions are

or
φ(0)¯
φ«(0)¯

φ§(0)¯ 0 (symmetric),

φ¨(0)¯ 0 (antisymmetric).

5

6

7

8

(3.10)

For simplicity, we assume that tangential wall inertia and damping may be
neglected, that is, that we may discard the first two terms in the tangential boundary
condition (3.9) ; comparison of numerical results for the resulting modified boundary
condition with those with the full condition shows the two to be indistinguishable. If
the tangential stress is also omitted from (3.9) we recover the no-slip condition used by
Benjamin (1960) and others, which does not include horizontal wall motion.

3.2. Specification of the base flow profile

To complete the specification of the Orr–Sommerfeld system derived in §3.1, a base
flow profile must be chosen. As a solution for flow in a channel, this will be either a
developing (boundary layer) or developed (plane-Poiseuille) flow. We are interested in
modelling short tubes, and so are concerned with the developing flow profile. There is
no closed-form solution for the developing flow stream function, and we therefore
follow Schlichting (1934; see also 1955) to obtain a perturbation solution,

u
!
¯S( f !

"
(η)­εf !

#
(η)­ε#f !

$
(η)­…), (3.11)

where ε3 (ν*x*}b*#S*)"/# (S*¯ the velocity of the initial (uniform) flow (thus, S*b*
is the flow rate through the channel) ; S¯S*}uW ), f

"
is the Blasius stream function, and

η is the Blasius similarity variable (z*­b*)}(ν*x*}S*)"/#. In non-dimensional variables,
ε¯ (x}SR

w
)"/# and η¯ (z­1)}ε(x). Solution for the correction terms, f

#
and f

$
, is

straightforward, so that we do not elaborate here (for details see LaRose 1994).
In the derivation of the Orr–Sommerfeld equation, u

!
was assumed to be a function

of z only; we thus evaluate ε for a fixed value of x¯x
!

to eliminate the dependence
of u

!
on the axial coordinate. Because ε changes as x"/# it is necessary to impose a

downstream limit on x
!

to maintain the validity of the perturbation solution for u
!
.

Following Schlichting (1934; 1955) we choose to restrict x
!
so that ε is sufficiently small

and the successive terms of the solution for u
!
remain well ordered, i.e. f !

"
" εf !

#
" ε#f !

$
.

This requires that ε be less than 0.1455, or by extension that we choose
x
!
! (0.1455)#R

w
S. If additional terms are included in the expansion for u

!
the

downstream constraint on x
!

becomes more severe (e.g. Collins & Schowalter (1962)
cite ε! 0.0707 (x

!
! 0.005R

w
S ) for a seven-term expansion). Comparison of the
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resulting velocity profile with a second-order finite-difference solution of the boundary-
layer equations shows that for positions x

!
within this region of validity the

perturbation solution is very good (LaRose 1994). For the base profile to be assumed
to be independent of x, we must also select x

!
to be large enough for the flow to be

locally parallel. We return to this issue in §4 and in the discussion in §9.

4. Solution for long waves

While it is in general difficult to solve the Orr–Sommerfeld system analytically, a
solution for the case of long waves (kU 0) is more tractable. Note that the following
analysis is general to arbitrary flow profiles ; we consider specific cases after the
derivation. For k' 1, let

φCφ
!
­kφ

"
­…, cC c

!
­kc

"
­… . (4.1)

Using these in the Orr–Sommerfeld equation (3.7) and letting kU 0, we obtain

φiv

!
¯ 0, (4.2)

so that φ
!
is a cubic polynomial in z. Imposing the boundary conditions (3.10) and the

leading-order forms of (3.8) and (3.9) (and assuming for (3.9) no horizontal wall
motion to simplify the analysis), we find

φ
!
¯ z, c

!
¯ u!

!
(z¯®1). (4.3)

Here we have normalized φ
!
so that rφ

!
(®1)r¯ 1. The solution (4.3) is for symmetric

disturbances only; we address the antisymmetric mode below. We see from (4.3) that
c
!
is strictly real, and so must continue to the next order in k to evaluate the stability

of the system.
At order k, the Orr–Sommerfeld equation (3.6) is

φiv

"
¯®iR

w
zu"

!
(4.4)

and φ
"
is thus the sum of another cubic polynomial in z and a particular solution. After

integration by parts once, the particular solution satisfies

φ#

"P
¯ iR

w
(u

!
®zu!

!
). (4.5)

Further integration is dependent on the choice of the base flow u
!
. Applying the

boundary conditions (3.10) and the order k terms of (3.8), we find

φ
"
¯®φ

"P
(z¯ 0)­B

"
z®"

#
(φ"

"P
(z®0)) z#­

iR
w

[1®(u!

!
(z¯®1))#]

6u!

!
(z¯®1)

z$­φ
"P

, (4.6)

so that, from (3.9),

c
"
¯ iR

wyu!

!
(z¯®1) [Φ

"P
(z¯ 0)®"

#
Φ"

"P
(z¯ 0)®Φ

"P
(z¯®1)®Φ!

"P
(z¯®1)]

®
1

3u!

!
(z¯®1)

[1®(u!

!
(z¯®1))#]z, (4.7)

where we have written φ
"P

¯ iR
w

Φ
"P

to make the imaginary character of c
"

explicit.
Equation (4.7) for c

"
is strictly imaginary, so that c

"
is the growth rate for the

disturbance. To find the critical flow speed at which c
"
becomes positive, it is necessary
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}ν) and uc ¯ (E*x$
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to integrate expression (4.5) for φ
"P

. We consider two cases. For plane-Poiseuille flow,
u
!
¯ 1.5S (1®z#), and we may integrate to find φ

"P
and evaluate (4.7) analytically,

obtaining c
"
¯ 0.067iR

w
(18S #®5). Instability appears at a flow speed S

LW
¯ 0.527; at

this point c
!
¯ u!

!
(®1)¯ 1.581. These are in good agreement with the numerical

solution (described in §5), which gives S
LW

¯ 0.525 and c
!
¯ 1.575 at k¯ 0.001. For

channel flow, we numerically integrate (4.5) using Simpson’s rule, and find (for
R

w
¯ 2230 and x¯ 1) S

LW
¯ 0±1387 and c

!
¯ 1.094. These agree with the numerical

values for the critical flow speed to within 10% for k% 0.014, and at k¯ 0.001 we find
numerically that S

LW
¯ 0.1388 and c¯ 1.093. The existence of the long-wave

instability is also useful for the numerical solution, as it gives starting points from
which the stability calculation may proceed.

The effect of varying the half-channel width and wall elastance on the long-wave
stability boundary for developing flow is shown in figures 2 and 3, in which the long-
wave critical flow speed S

LW
and volumetric flow rate, bS

LW
are plotted as functions

of the half-channel width and wall elastance. In both figures, flow speeds and half-
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channel width are scaled on (ν}x$

!
) and x$

!
, respectively, to isolate the effect of changing

b. Curves for different values of the wall elastance are shown in both figures. These
figures show that the critical flow speed increases as channel width is decreased, but
that the critical volumetric flow rate decreases. Increasing the wall elastic modulus
increases both the critical flow speed and flow rate. Note that the long-wave stability
bounds do not depend on the wall properties other than the elastance; the effects of the
mass ratio M, bending stiffness B, etc. appear only at higher orders in k.

The above treatment was strictly for the case of symmetric disturbances. When
antisymmetric disturbances are considered the analysis proceeds in much the same
manner, with the midline boundary conditions replaced by the antisymmetric forms of
(3.10). In this case the leading-order term of the wall condition (3.8) and the second
midline condition are redundant, so that the solution for the leading-order
antisymmetric eigenfunction and eigenvalue φ

A!
and c

A!
becomes a one-parameter

family of solutions,

φ
A!

¯A
A!

­D
A!

z#, c
A!

¯
A

A!
­D

A!

2D
A!

u!

!
(z¯®1), (4.8)

(for normalization we may specify one of A
A!

or D
A!

; when possible we take A
A!

¯ 1)
provided the free parameter D

A!
is non-zero. If D

A!
is zero the second wall condition,

(3.9), requires A
A!

¯ 0, and the solution for φ
A!

is trivial. At O(k), condition (3.8)
becomes a condition on D

A!
, and requires it to be zero. Thus the only eigenfunction

is the trivial one, and there is no long-wave antisymmetric instability.
It may be noted at this juncture that in the limit of long waves the assumption of

locally parallel developing flow made in the derivation of the Orr–Sommerfeld
equation is violated. Thus, in this limit, the developing flow result would be somewhat
different if non-parallel effects were included. However, while studies such as Hall &
Smith (1984) and Fasel & Konzelmann (1990) demonstrate the influence of non-
parallelism on Tollmein–Schlichting instabilities, the body of this work has only
considered flow with rigid boundaries. We consider these works and others in greater
detail in §9. As flutter instabilities are generally dominated by wall (rather than fluid)
effects, it is not clear how these results would apply to flutter, and there may be some
hope that the fundamental nature of the long-wave instability would not be altered by
non-parallelism in the flow. We speculate that the long-wave instability may be related
to further collapse of the flexible tube but clearly (owing both to our choice of geometry
and the issue of non-parallelism) are unable at this juncture to investigate this. Note
that if the wall boundary conditions (3.8) and (3.9) are replaced by those for a rigid
wall, φ(z¯®1)¯φ«(z¯®1)¯ 0, the solution for either symmetric or antisymmetric
disturbances is trivial, confirming that the long-wave instability is a function of wall
flexibility.

5. Numerical solution method

To solve the Orr–Sommerfeld system (3.6) and (3.8)–(3.10) numerically we use a
multiple shooting method with orthonormalization (Davey 1973), with modifications
to accommodate the presence of the compliant wall (LaRose 1994). Briefly, we define
the orthonormalized transfer matrix C as in Davey’s paper to be that matrix which,
when multiplied against an initial condition φ

!
(¯ (φ,φ«,φ§,φ¨)T) for φ at the channel

midline, gives an integration of φ
!
at the wall which preserves the singularity necessary

for the determination of the eigenvalue c through application of the boundary
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Present work Previous result

Case Re
CR

k
CR

Re
CR

k
CR

Plane Poiseuille flow 5772.2 1.021 5772.2 1.021 [HDR]
Developing channel flow, x¯ 100 9383 1.67 9790 [GG]

x¯ 170 8330 1.34 8420 [GG]
Single plate (Blasius) flow 519.7 0.305 520 0.301 [J]

T 1. Comparison of critical Reynolds and wavenumbers for TSI in flows with rigid boundaries.
[HDR] Hughes, in Drazin & Reid (1981), [GG] Gupta & Garg (1981) (from their figure 1), [J]
Jordinson (1970). (Values of k

CR
for the results of Gupta & Garg are difficult to obtain accurately

from their figures and so are omitted.)

conditions there. With the boundary conditions at the wall defined by the vector
operators B

"
and B

#
(so that the ith element of B

j
is the coefficient of the (i®1)th

derivatives of φ found in equations (3.8) or (3.9)), the boundary conditions at the wall
may be written as

0BT

"

BT

#

1Cφ
!
¯ 0001 . (5.1)

For the channel problem, the initial condition φ
!

is chosen to satisfy either the
symmetric boundary conditions φ(0)¯φ§(0)¯ 0 or the antisymmetric boundary
conditions φ«(0)¯φ¨(0)¯ 0, so that φ

!
will be a linear combination of two basis

vectors : either φ
!
¯ (0, a

"
, 0, a

#
) or φ

!
¯ (a

"
, 0, a

#
, 0). Thus for condition (5.1) to have a

non-trivial solution the eigenvalue c must be found to satisfy the determinant condition

(B
"
[c

#
) (B

#
[c

%
)®(B

"
[c

%
) (B

#
[c

#
)¯ 0, (5.2)

(for symmetric disturbances) where c
j

indicates the jth column of the transfer
matrix C.

In some cases (e.g. if the flow over a single compliant surface is of interest) the
boundary conditions at the ‘channel midline’ (which for flow over a single surface is
equivalent to ‘ infinity ’) cannot be written as a linear combination of two basis vectors,
as was the case above. In this case, to preserve the outlined method, we introduce a new
variable φW ¯Hφ, where the matrix H is chosen to transform the boundary conditions
at the ‘channel midline’ to a simple form such as φW (0)¯φW §(0)¯ 0. The modified
system is then solved for φW as indicated above, bearing in mind that the integration
routine and boundary conditions B

j
must be modified to take into account the

transformation of φ by H.
To verify the accuracy of this method, we next compare results from our stability

calculations with a number of known stability results for different geometries and
boundary conditions.

5.1. Comparison for flows with rigid boundaries

In geometries bounded by rigid plates we scale velocity on the flow speed of the base
flow profile, and lengths on the half-channel width (for channels) or the displacement
thickness of the boundary layer (for flow over a single plate). In table 1 we show the
stability results we obtain for the TSI for plane-Poiseuille and developing channel flow,
and for Blasius flow over a single plate. These are compared with previous results. The
agreement is seen in all cases to be very good. The lack of exact agreement with the
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F 5. Developing flow flutter dispersion relation as a function of flow speed. (a) root 1; (b) root
2. –––, imag (c), ——, real(c) (M¯ 2190, B¯ 540, T¯ 0, G¯ 0.054, d¯ 882, R

w
¯ 2230, k¯ 0.1,

x
!
¯ 1.0).

6. Results

For the results presented below, we use parameter values to model a collapsed
thick-walled tube, as given in Gavriely et al. (1989). The dimensionless values are given
in the figure caption for figure 5, and correspond to the dimensional values ρ$

W
¯

0.941 g cm−$, h*¯ 0.9 cm, ρ*¯ 8¬10−% g cm−$, b*¯ 0.07 cm, ν*¯ 0.225 cm# s−",
G*¯ 1.72 s−", T*¯ 0, E*¯ 5.86¬10& dyne cm−$, and D*¯ 7621 dyne cm.

The flutter dispersion relation has two roots, shown in figure 5(a) as functions of the
flow speed S. At zero flow speed these have equal decay rates and phase speeds of equal
magnitude but opposite sign. We designate the initially downstream travelling wave
(positive real(c)) as root 1 and the other as root 2. Root 1 is that which becomes
unstable first as S is increased, and is a Type B wave as defined by Benjamin (1963) and
Landahl (1962). Root 2, which is initially upstream travelling, slows as the flow speed
is increased until for some flow speed S

D
it reverses direction to become downstream

travelling. In simpler systems (Grotberg & Davis 1980), reversal of this wave was
interpreted as signifying flow limitation or ‘choked flow’ (Shapiro 1977). In figure
5(a) (and 5b) we see a flutter instability at a lower flow speed than S

D
, which is

consistent with our use of parameter values to model an already collapsed flexible tube,
for which flutter is expected. When large wall-to-fluid mass ratios are considered (as are
appropriate for the lung airway) the flow may be insufficient to reverse the direction
of root 2 for small to moderate flow speeds, so that it remains upstream travelling until
significantly after the onset of instability in root 1 (as shown in figure 5b) .

Neutral stability curves for the symmetric and antisymmetric flutter instabilities are
shown in figure 6, giving critical flow speeds as a function of wavenumber. Points
below (above) the curves are stable (unstable). The limit of kU 0 on these curves gives
S
LW

, and the local minimum for k" 0 gives the critical flow speed for the oscillatory
(flutter) instability, S

F
. We denote the minimum of S

LW
and S

F
as S

CR
, the flow speed

at which instability is first seen. In figure 6 the symmetric mode is seen to be the least
stable, and as S

F
!S

LW
flutter is seen rather than the long-wave instability. However,

by varying another parameter, for example the mass ratio M, we can shift the critical
flow speed to S

LW
. In figure 7 neutral stability curves are shown for a number of

different mass ratios. Reduction of the mass ratio M stabilizes the flutter instability, so
that the instability moves from non-zero to zero wavenumber as M is decreased. Once
the long-wave instability has appeared, further variation in M does not alter the onset
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flow speed of the instability. This transition between the finite- and long-wavelength
instabilities admits the appearance of a co-dimension two bifurcation point, occurring
when the long-wave and flutter instabilities have the same critical flow speed. Note that
as the mass ratio appears in the definition of the wall damping G, to isolate the effect
of variation in M it is necessary to allow G to change while holding Gq (3 b*G*}uW )
fixed.

In figures 8(a) and 9(a) the effect of variation of the wall damping G and wall
elastance on the stability of the system is shown, in figure 8(a) by plotting S

LW
and S

F
,

and in figure 9(a) by plotting S
F

(for the range of parameter values shown in figure 9,
S
F

!S
LW

) as functions of these variables. In figure 8, curves for different values of M
are plotted to show the destabilizing effect of increasing inertia, and in figure 9 the
stabilizing effect of increasing the wall flexural rigidity (B) is also shown. Figures 8(b)
and 9(b) show the frequency of the oscillations appearing at S

CR
. Note the

discontinuous change in the frequencies shown in figure 8(a) arising from the
appearance of the long-wave instability. Because E* appears in the definition of the
velocity scale uW , in figure 9 velocities are scaled on the viscous velocity scale (ν*}b*) and
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E* on (ρ*ν*#}b*$)¬10%. Increasing either G or the wall elastance stabilizes the flutter
instability, which may be expected, as the flutter root going unstable is a Type B wave,
which is stabilized by wall damping, and increasing E (stiffening the wall) is also known
to stabilize the flutter instability. In a rigid channel the flutter instability does not exist.
Similarly, figure 9(a) also shows that increasing B stabilizes the system. As shown in
the inset in the figure, this is most pronounced for larger values of the elastance, for
which the instability has a shorter wavelength. This is as expected, and a similar effect
may be obtained through variation of the wall tension T. From figure 9(b) it is seen
that the critical flutter frequency goes approximately as E "/#, which is consistent with
the results of Grotberg & Reiss (1984). Note that the second wall stiffness parameter,
d, is not independent of B, varying only by a factor of 12 (b*}h*)#. We have retained
it as a second parameter only to facilitate comparison with the results obtained for the
limit of no horizontal wall motion (which corresponds to d−"U 0). We find little
quantitative difference between the cases d−"¯ 0 and d−"1 0, which is reasonable
given the value of d for the systems we consider, d¯ 882.

Because the half-channel width b* also appears in the scaling of the problem, to
examine the effect of changing b* we scale the system as noted in §4, scaling lengths
on x$

!
and velocities on (ν*}x$

!
). Figure 10 shows the neutral stability curves for a

number of different half-channel widths b. As b is increased, the effect of the second
plate and hence of viscosity in the channel is decreased, which stabilizes Type B waves.
However, as indicated in §4, the long-wave instability continues to appear at lower flow
speeds, so that for sufficiently wide channels instability is lost to the long-wave
instability while for a narrower channel, flutter will be seen. This is also seen in figure
11, which shows S

LW
and S

F
as functions of b. We see that as b is increased past E 6–9

the instability goes from the flutter to the long wavelength instability.
This appearance of the long wave (collapse) instability for wide channels and flutter

for narrower ones is consistent with physical observations. Experiments of flow
through flexible tubes (Gavriely et al. 1989) have shown that flutter only occurs
following tube collapse. Additionally, in the course of expiration the diameter of the
lung airways decreases, so that it should be expected from our theoretical predictions
that collapse should be seen before wheezing (flutter), as it is in Gavriely et al. (1987).
In figure 11, curves are given for two values of the wall elastance (and hence R

w
),

showing that as the wall elastance is increased the codimension two point shifts to
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II, Blasius flow over a single compliant plate. Other parameters as figure 7 (M¯ 3190), with
modified scaling.

larger channel widths. This is consistent with the correlation between the long-wave
instability and tube collapse. In stiffer tubes, the flutter instability is seen in the absence
of collapse, indicating that the codimension two point has in those cases shifted
sufficiently to guarantee the appearance of the flutter instability. Also, the onset of
wheezing in the lung is quite sudden, consistent with decreasing airway diameter
causing a shift from a long-wave to a flutter instability.

As the half-channel width is increased the perturbation solution for the developing
flow that we are using converges to Blasius flow over a single compliant plate, and the
stability results for the single plate system (e.g. Carpenter & Garrad 1986) are
recovered for the finite wavenumber instability. However, for long waves the effect of
the opposing channel wall is always significant, so that the single plate limit is not
reached; this is shown in figure 10 through the inclusion of a stability curve for Blasius
flow over a single compliant plate.

Also as the half-channel width is increased, some confusion appears in the resolution
of the flutter root in the vicinity of the point at which the maximum speed of the flow
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and phase speed of the disturbance become equal. This is due to the existence in the
infinite (single plate) system of a continuous eigenvalue spectrum along this line
(Grosch & Salwan 1978; Craik 1991). While there is no continuous spectrum in the
finite width (channel) system (Lin 1961), as the channel is modified to look more like
the infinite case (when the channel width is increased, or other parameters altered to
obtain the same effective result) the numerical solution may be expected to encounter
difficulty in resolving the root as the phase speed of the disturbance becomes similar
to the flow speed of the base flow.

Because increasing the Reynolds number of the flow is equivalent to decreasing the
fluid viscosity, such an increase stabilizes the flutter instability. However, in the case of
the developing profile, increasing the Reynolds number also changes the base flow
profile, causing a narrowing of the boundary layer at the wall for constant flow speed
S and axial position x

!
. A similar effect may be obtained by decreasing x

!
. This

destabilizes the flutter instability. It is difficult to draw conclusions for wide ranges of
axial positions, however, owing to limitations imposed by the downstream limit of
validity for our developing profile. Further, as points farther upstream are considered,
non-parallelism in the flow may become significant. This is discussed in §9.

Wheezing lung sounds are thought to be symptomatic of airway flutter (Grotberg &
Davis 1980). Thus the characteristics that distinguish the lungs of wheezing patients
from healthy subjects should relate to those effects that destabilize the flutter
instability. We say above that these destabilizing effects include reduction of the wall
elastance and bending stiffness, and reduction of the half-channel width, all
characteristics of asthmatic and emphysematous patients’ airways.

7. Specific comparison with experiments

As our motivation for beginning this study is flutter in the lung airways, we next
make some comparisons between the model developed in the preceding sections and
physical systems. In that the model is based on a planar channel model while the
experiments with which we are comparing exhibit non-planar, three-dimensional
geometries it is clear that the comparisons are in some sense preliminary – however,
given that the important mechanisms of the fluid–wall interaction are present in the
planar model, we hope for at least qualitative agreement between the model and the
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experimental results. First, we compare with some wheezing experiments, and
subsequently with experiments with flexible tubes.

The characteristics of the lung airways that we need to obtain the parameters in our
model (M,B, etc.) are unfortunately not known with sufficient accuracy to allow a
quantitative comparison with experiments. To obtain these parameter values, we use
estimates for the lung airway characteristics used in Dragon & Grotberg (1991) and
available from Olson, Dart & Filley (1970) (details may be found in LaRose 1994), and
obtain wheezing (flutter) frequencies of 508–1808 Hz. These are in good agreement
with the forced expiratory wheeze experiments (Gavriely et al. 1987), which report
wheezing frequencies of 580–2730 Hz. There are two explanations for the experimental
range of frequencies being higher than the theoretical predictions: one is inaccuracy in
the parameter estimates used to obtain the theoretical results, and the other that we
cannot be sure that the experimental frequencies are those at the onset of the wheezing,
where our linear model is applicable. It has been observed in tube experiments
(Gavriely et al. 1989) that the nonlinear (post-onset) frequency response is higher than
that at onset. This has been seen theoretically in the nonlinear analysis of the Grotberg
& Reiss (1984) model, which was found by Grotberg & Gavriely (1989) to compare
favourably with the post-onset behaviour seen in tube experiments (Gavriely et al.
1989). As no critical flow speeds are reported for the wheeze experiments, we do not
attempt a comparison of onset flow speeds.

A more quantitative comparison is possible with experiments with flexible tubes.
Gavriely et al. (1987, 1989) have demonstrated that the characteristics of both the
collapse phenomenon and the sounds produced in such tubes are similar to those in the
lung. Our comparison with their results for flexible tubes should therefore indicate that
our model is also applicable to the lung. Gavriely et al. (1989) experimentally
investigated air-conducting flexible tubes, and found an oscillatory instability following
tube collapse. To obtain results using our developing flow model, it is necessary to
select an axial position at which to evaluate the developing flow profile. In the
experiments a long (60 cm) flexible tube was fastened at either end to a rigid pipe, and
air flow through the tube induced by a suction pump at the downstream end. As the
driving pressure gradient was increased, collapse and flutter occurred at the
downstream end of the tube. The entrance length for a tube is x

ENT
¯ 0.25 a#u

AVG
}ν

(where a is the tube radius and u
AVG

the average fluid velocity) (Schlichting 1955) ; for
the experiment the uncollapsed tube radius a¯ 0.325 cm, ν¯ 0.15 cm# s−", and
u
AVG

¯ 1600 cm s−", so that x
ENT

¯ 280 cm. Thus, it is clearly appropriate to consider
the flow in the collapsed tube section to be developing.

However, the precise appearance of the profile is unclear, as when the flow enters the
collapsed section it regains a more pronounced boundary-layer character owing to the
constriction. We therefore calculate the stability of the system at several axial locations,
and also compare with the results for fully developed flow. These results, along with
the experimental data, are shown in table 3, which shows flutter frequencies and critical
flow speeds for three different experimental cases. We see that the predicted flutter
frequencies are in good agreement with the experimental observations. Similarly, the
wavelengths of the instability are close : the theoretically predicted wavelengths are
about 3 cm while wavelengths of 3–5 cm were observed experimentally (Gavriely et al.
1989). It is not appropriate to compare directly the theoretical and experimental flow
speeds, however, as the value measured experimentally is an average over the collapsed
tube cross-section. As this cross-section is a dumbbell-like shape, the velocity in the
central (channel) section of the collapsed tube (where the oscillations appear) will be
lower than that in the outer lobes because of viscous resistance.
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f (developing f (developing f (experimental
flow, x

!
¯ 1) flow, x

!
¯ 3) f (Poiseuille flow) value)

b (cm) (Hz) (Hz) (Hz) (Hz)

0.081 306 308 307 292
0.070 312 309 308 300
0.037 348 † 362 325

b (cm)

SF

CR

(developing
flow, x

!
¯ 1)

(cm s−")

SF

CR

(developing
flow, x

!
¯ 3)

(cm s−")

SF

CR

(Poiseuille
flow)

(cm s−")

Average
S

CR

experimental
(cm s−")

Centre
S

CR

(from Fidap)
(cm s−")

0.081 371 504 619 4880 3950
0.070 344 461 540 2760 1000
0.037 280 † 348 1270 470

† For b¯ 0.037, x
!

must be less than three for validity of the developing flow profile.

T 3. Comparison of theoretical flutter frequencies and critical flow speeds with tube
experiments (Gavriely et al. 1989).

To estimate the extent to which this flow speed differs from the experimentally
measured cross-sectional average, however, requires knowledge of the dimensions of
the collapsed tube section, which are not reported by Gavriely et al. (1989) ; dimensions
that are given are the half-channel width and cross-sectional area. Flaherty, Keller &
Rubinov (1972) numerically obtained shapes for collapsed tubes, to which the
experimentally dimensions might be matched, but their model is for a tube with walls
of negligible width while in the experiments the width of the tube wall (0.19 cm) was
a substantial percentage of the uncollapsed radius (0±325 cm). We therefore consider
approximate collapsed tube shapes based on the dimensions that are given and the
results of Flaherty et al., and find the flow speeds in these collapsed tube shapes using
the finite elements software package FIDAP. As the imprecision in estimating the tube
shape and dimensions itself prevents the velocity calculation from being quantitative,
only fully developed flow is considered, as this results in an order of magnitude decrease
in the required computational resources from those necessary for the calculation of
developing flow. The results of these calculations are also shown in table 3, and indicate
that for the more collapsed tube shapes (smaller b, when the channel model is most
appropriate), the flow speed in the channel section of the tube was likely to have been
much closer to our theoretical predictions than the cross-sectional average.

Two observations verify that the flutter instability investigated above (rather than
the TSI) is that which is relevant to the tube experiments, and, by extension, the lung.
First, the experimentally observed instability is symmetric, while the TSI is
antisymmetric, and second, we also calculate the critical flow speed for the TSI to
demonstrate that it occurs for much higher flow speeds. For TSI we find a critical
average flow speed of approximately 18500 cm s−", which is far in excess of both the
experimentally measured and theoretically predicted (flutter) values. The frequency of
the oscillation for the instability is 11360 Hz at criticality, which is again several orders
of magnitude larger than the experimental or theoretical values. These calculations are
for plane-Poiseuille flow; the critical Reynolds numbers for the TSI in developing flows
are much higher (Chen & Sparrow 1967).
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8. The Tollmien–Schlichting instability

It is clear from the preceding discussion that the TSI is not likely to appear for the
thick-walled, air-conveying tubes modelled in the present study, so that we are justified
in restricting our attention to flutter. However, in other systems, e.g. when the ratio of
wall and fluid densities are similar (so that the mass ratio is closer to unity), the TSI
is likely to be significant. While this is not the case in the lung airways, it is for many
engineering applications and for physiological applications such as blood flow. In the
latter, however, the flows are likely to be fully developed, and in arterial flows
significantly pulsatile. The stability of pulsatile flows with compliant boundaries has,
however, not been considered to date.

9. Discussion

We have considered the stability of a flexible walled channel conveying a developing
flow, showing the existence and behaviour of both a finite wavenumber and long-wave
instability. These may appear independently or simultaneously, in the latter case
resulting in a codimension two bifurcation point from the base flow. The long-wave
instability has not been seen in previous channel studies because it requires the
inclusion of transverse variation in the base flow profile. The existence of the long-wave
instability may also be of physical interest, as we speculate that it could be related to
further tube collapse. We have examined the effect of variation of different system
parameters on the instabilities of the system, and have shown, in particular, that the
effects found theoretically to destabilize the flutter instability are those that would be
expected to characterize the lungs of individuals who are more prone to flow limitation
and wheezing, thus providing further support for the theory that pulmonary flow
limitation and wheezing are symptomatic of airway collapse and flutter. These
qualitative observations are further corroborated by the more quantitative agreement
between theoretically predicted and experimentally observed flutter frequencies shown
in §7. To compare theoretical and experimental critical flow speeds, however, we have
shown that consideration of the geometry of the experimental collapsed tube cross-
section is important.

As indicated in the model derivation in §3, the use of the developing flow profile in
the stability calculation demands that the axial position at which the profile is
evaluated be chosen so that the locally parallel assumption be valid. For the
assumption of parallel flow to be completely valid the change of the boundary-layer
thickness over a disturbance wavelength must be small by comparison to the channel
width. More precisely, it should be the case that δ(x

!
­∆x)®δ(x

!
)' 1, where δ(x

!
) is

the boundary-layer width (non-dimensionalized on half-channel width) a non-
dimensional distance x

!
downstream from the mouth of the channel and ∆x¯ 2π}k is

the non-dimensional disturbance wavelength. Similarity analysis of the boundary-layer
equations gives δ(x

!
)E 5(ν*x$

!
}uW b*#)"/# (Schlichting 1955) ; with this, the condition for

slow variation of δ(x
!
) reduces in a straightforward manner to

2π

kR
w

S
'

1

25 01­10 0 x
!

R
w

S1
"/#1 . (9.1)

The requirement for the developing flow profile itself to be valid, i.e. that the axial
position being considered be downstream of the leading edge of the channel wall, is
x( (R

w
S )−" (Batchelor 1967), which is in general less stringent than the above. For the
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developing flow profile that we use, the axial position x considered must also satisfy
the requirement x! 0.02R

w
S (cf. §3.3). We are not guaranteed in advance, however,

that on satisfying this condition (9.1) will also be satisfied – this is clearly the case for the
long-wave instability. We therefore mention here the possible effect of non-parallelism
on the stability calculation. For the TSI non-parallel effects have been shown to be
destabilizing for Blasius flow over a single wall (Gaster 1974), and for developing flow
in a channel (Garg & Gupta 1981). However, the introduction of non-parallelism also
results in great sensitivity to the quantity used to measure instability (e.g. growth in
axial or transverse velocity, kinetic energy, etc.), so that it is difficult to quantify the
degree to which this is the case, and the magnitude of the effect may be less than was
previously thought (Fasel & Konzelmann 1990). For Blasius flow over a single rigid
wall a detailed numerical study demonstrated that parallel flow results provide a good
leading-order approximation for the desired stability results (Fasel & Konzelmann
1990). A nonlinear analytical study (Hall & Smith 1984) showed that non-parallelism
is significant in the development of the instability, determining the eventual state
attained by the flow downstream and permitting a smooth bifurcation. The only study
of the effect of non-parallelism on flow with a compliant boundary treated the flow
over a single compliant wall, and showed that in that geometry non-parallelism slightly
destabilizes the TSI and one mode of the flutter instability, and may more significantly
destabilize the low-Reynolds number flutter mode (Yeo, Koo & Chong 1994). This
destabilizing effect was found to decrease with increasing Reynolds number. It has not
been shown whether this result would apply directly to the channel geometry we
consider, and the Reynolds numbers in the lung airways we seek to model are high, so
that we expect our results should be reasonable in the absence of non-parallel
considerations. We have therefore chosen not to undertake an analysis of the non-
parallel problem here.
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